Python 开发中有哪些高级技巧? 老男孩 python的培训
2018-02-10 00:43:49
huyunyun
  • 访问次数: 40
  • 注册日期: 2017-12-13
  • 最后登录: 2018-02-10
  • 当前积分: 423
python语言的一些高阶用法主要有以下几个特性:
• generators生成器用法
• collections包常见用法
• itertools包常见用法
• packing/unpacking封包/解包特性
• Decorators装饰器
• Context Managers上下文管理期
以上几个特性我会针对应用场景,使用注意事项,应用举例几个维度分别进行讲解,如果有同学对某个特性特别熟悉则可以直接跳过。
generators生成器用法
generator一般用来产生序列类型的值得对象,一般都可以在for循环中迭代,也可以通过next方法调用,生成器可以通过yield关键字产生。
生成器的作用:
• 减少内存占用 比如:利用迭代器的使用方式打开文 with open("/path/to/file") as f: for line in f: # 这个地方迭代文件 print(line)
• 提高运行效率
• 延迟运行,仅当需要运行的地方才开始执行
如下例子:
def fibonacci_generator():
a, b = 0, 1
while True:
yield a
a, b = b, a + b

# Print all the numbers of the Fibonacci sequence that are lower than 1000
for i in fibonacci_generator():
1000:
break
print(i)
输出结果
0
1
1
2
3
5
8
13
21
34
55
89
144
233
377
610
987
在python中可以使用生成器表达式去迭代一个对象,生成器表达式和列表最大的差别就在于是否一次性将结果计算完成,举例如下:
a = (x * x for x in range(100))
# a is a generator object
print(type(a))
# Sum all the numbers of the generator
print(sum(a))
# There are no elements left in the generator
print(sum(a))
输出结果如下:

328350
0
collections包常见用法
collections包是标准库的一个模块,主要目的是用来扩展容器相关的数据类型, 我们通过dir查看collections包有哪些模块:
import collections
dir(collections)
['Callable', 'Container', 'Counter', 'Hashable', 'ItemsView', 'Iterable', 'Iterator', 'KeysView', 'Mapping', 'MappingView', 'MutableMapping', 'MutableSequence', 'MutableSet', 'OrderedDict', 'Sequence', 'Set', 'Sized', 'ValuesView', '__all__', '__builtins__', '__doc__', '__file__', '__name__', '__package__', '_abcoll', '_chain', '_class_template', '_eq', '_field_template', '_get_ident', '_heapq', '_imap', '_iskeyword', '_itemgetter', '_repeat', '_repr_template', '_starmap', '_sys', 'defaultdict', 'deque', 'namedtuple']
我们以Counter为例:
from collections import Counter
a = Counter('blue')
b = Counter('yellow')
print(a)
print(b)
print((a + b).most_common(3))
输出结果如下:
Counter({'u': 1, 'e': 1, 'l': 1, 'b': 1})
Counter({'l': 2, 'y': 1, 'e': 1, 'o': 1, 'w': 1})
[('l', 3), ('e', 2), ('y', 1)]
另外defaultdict也是我常用的一个模块,defaultdict是dict的子类,允许我们通过工厂方法来动态创建不存在的属性,举例如下:
from collections import defaultdict
my_dict = defaultdict(lambda: 'Default Value')
my_dict['a'] = 42
print(my_dict['a'])
print(my_dict['b'])
运行结果如下:
42
Default Value
在工作中我经常用defaultdict来构造一颗树形数据结构来满足我的常规需求,实例如下:
from collections import defaultdict
import json
def tree():
"""
Factory that creates a defaultdict that also uses this factory
"""
return defaultdict(tree)
root = tree()
root['Page']['Python']['defaultdict']['Title'] = 'Using defaultdict'
root['Page']['Python']['defaultdict']['Subtitle'] = 'Create a tree'
root['Page']['Java'] = None

print(json.dumps(root, indent=4))
运行结果如下:
{
"Page": {
"Python": {
"defaultdict": {
"Subtitle": "Create a tree",
"Title": "Using defaultdict"
}
},
"Java": null
}
}
itertools包常见用法
itertools包也是标准库的一个模块,他常见的用法是用来扩展迭代器的使用,高效的执行迭代
我们通过dir方法来查看itertools都有哪些模块
import itertools
dir(itertools)
['__doc__', '__file__', '__name__', '__package__', 'chain', 'combinations', 'combinations_with_replacement', 'compress', 'count', 'cycle', 'dropwhile', 'groupby', 'ifilter', 'ifilterfalse', 'imap', 'islice', 'izip', 'izip_longest', 'permutations', 'product', 'repeat', 'starmap', 'takewhile', 'tee']
我们以permutations举例如下:
from itertools import permutations

for p in permutations([1,2,3]):
print(p)
输出结果:
(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)
combinations示例如下:
from itertools import combinations
for c in combinations([1, 2, 3, 4], 2):
print(c)
输出结果:
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
另外chain模块也是常用模块之一 chain使用示例:
from itertools import chain

for c in chain(range(3), range(12, 15)):
print(c)
输出结果如下:
0
1
2
12
13
14
另外itertools工具包里还有很多常见的用法,这里不再一一举例,大家可以自行尝试。
packing/unpacking特性
在函数参数里使用*args,**kwargs都很常见,但是以下的几种用法你们有试过吗?
a, *b, c = [2, 7, 5, 6, 3, 4, 1]
print(a)
print(b)
print(c)
以上代码输出:
2
[7, 5, 6, 3, 4]
1
有同学抱怨说这样运行不对,会报错,呵呵,那是因为你用的python2,python3中已经对pack,unpack特性进行了很好的实现。
刚才我已经看到了pack的举例,我们接下来再看看unpack
def repeat(count, name):
for i in range(count):
print(name)

print("Call function repeat using a list of arguments:")
args = [4, "cats"]
repeat(*args)

print("Call function repeat using a dictionary of keyword arguments:")
args2 = {'count': 4, 'name': 'cats'}
repeat(**args2)
运行结果如下:
Call function repeat using a list of arguments:
cats
cats
cats
cats
Call function repeat using a dictionary of keyword arguments:
cats
cats
cats
cats
最后我们再回归到函数参数的例子上:
def f(*args, **kwargs):
print("Arguments: ", args)
print("Keyword arguments: ", kwargs)

f(3, 4, 9, foo=42, bar=7)
以上代码输出:
Arguments: (3, 4, 9)
Keyword arguments: {'bar': 7, 'foo': 42}
Decorators装饰器
装饰器这个语法糖相信使用flask或者bottle的同学应该都不陌生,使用django的也应该经常会遇到,但是大家有没有去想过这个语法糖的应用场景呢?我简单整理了下,大概有以下几种装饰器:
• 缓存装饰器
• 权限验证装饰器
• 计时装饰器
• 日志装饰器
• 路由装饰器
• 异常处理装饰器
• 错误重试装饰器
我们拿缓存装饰器举例:
def cache(function):
cached_values = {} # Contains already computed values
def wrapping_function(*args):
if args not in cached_values:
# Call the function only if we haven't already done it for those parameters
cached_values[args] = function(*args)
return cached_values[args]
return wrapping_function

@cache
def fibonacci(n):
print('calling fibonacci(%d)' % n)
if n
return n
return fibonacci(n-1) + fibonacci(n-2)

print([fibonacci(n) for n in range(1, 9)])
以上代码输出:
calling fibonacci(1)
calling fibonacci(2)
calling fibonacci(0)
calling fibonacci(3)
calling fibonacci(4)
calling fibonacci(5)
calling fibonacci(6)
calling fibonacci(7)
calling fibonacci(8)
[1, 1, 2, 3, 5, 8, 13, 21]
在python3中有一个包叫做lrucache,就是用的装饰器的语法糖进行实现。
lrucache的简单实用如下:
from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci(n):
print('calling fibonacci(%d)' % n)
if n
return n
return fibonacci(n-1) + fibonacci(n-2)

print([fibonacci(n) for n in range(1, 9)])
运行结果:
calling fibonacci(1)
calling fibonacci(2)
calling fibonacci(0)
calling fibonacci(3)
calling fibonacci(4)
calling fibonacci(5)
calling fibonacci(6)
calling fibonacci(7)
calling fibonacci(8)
[1, 1, 2, 3, 5, 8, 13, 21]
Context Managers上下文管理期
最后我们再看python中的上下文管理器,这个语法糖在资源管理上有很常见的使用场景,比如上文中我用with open("file") as的用法,使用了with后就不用担心文件不会关闭了,在处理socket编程的时候也可以用。这个语法糖其实也不难就是两个魔术方法的实现,enter 和exit,一个控制入口,一个控制出口。
常规的使用with来统计一段代码运行时间的例子:
from time import time


class Timer():
def __init__(self, message):
self.message = message

def __enter__(self):
self.start = time()
return None # could return anything, to be used like this: with Timer("Message") as value:

def __exit__(self, type, value, traceback):
elapsed_time = (time() - self.start) * 1000
print(self.message.format(elapsed_time))

来源:http://www.oldboyedu.com
with Timer("Elapsed time to compute some prime numbers: {}ms"):
primes = []
for x in range(2, 500):
if not any(x % p == 0 for p in primes):
primes.append(x)
print("Primes: {}".format(primes))
输出结果:
Primes: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499]
Elapsed time to compute some prime numbers: 1.055002212524414ms
总结
其实python是一门特别人性化的语言,但凡在工程中经常遇到的问题,处理起来比较棘手的模式基本都有对应的比较优雅的解决方案。